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Abstract A viscoelastic model of the k-Bkz (Kaye 1962; Bernstein et al. 1963)
type is developed for isotropic biological tissues, and applied to the fat pad of the
human heel. To facilitate this pursuit, a class of elastic solids is introduced through
a novel strain-energy function whose elements possess strong ellipticity, and there-
fore lead to stable material models. The standard fractional-order viscoelastic (Fov)
solid is used to arrive at the overall elastic/viscoelastic structure of the model, while
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the elastic potential—via the k-Bkz hypothesis—is used to arrive at the tensorial
structure of the model. Candidate sets of functions are proposed for the elastic
and viscoelastic material functions present in the model, including a regularized
fractional derivative that was determined to be the best. The Akaike information
criterion (a1c) is advocated for performing multi-model inference, enabling an ob-
jective selection of the best material function from within a candidate set.

Key words nonlinear elasticity — viscoelasticity — finite strain — fractional calcu-
lus — Mittag-Lefller function — soft tissue — multi-model inference

1 Introduction

The human heel is comprised of skin, a fat pad, the origin of the plantar aponeu-
rosis tendon and the calcaneal bone. Collectively, the soft tissues therein constitute
the heel pad. The heel pad is our body’s natural shock absorber, dissipating im-
pulses introduced into the body during normal activity, and thereby attenuating
the forces that are transmitted up through the body’s skeletal structure (Cavanagh
et al. 1984).

A certain amount of loading is needed to maintain healthy bone. Bed-rest stud-
ies have demonstrated that prolonged inactivity depletes bone density (Shackelford
et al. 2004).

NASA has a need to understand how much force is being transferred into the
load-bearing bones of the body during exercise so that effective countermeasure
protocols can be developed to help avert bone loss in astronauts during long space
missions (Lang et al. 2004). Current devices that measure in-shoe forces beneath
the heel have recorded forces that exceed twice body weight when an astronaut ran
on a treadmill on Earth; whereas, when running on an identical treadmill located
within the International Space Station, using the same in-shoe transducers and
a harness attached at the waist pushing the astronaut against the treadmill, maxi-
mum forces of about one and one-half times body weight were recorded (Cavanagh
et al. In press). To determine how much of this force is actually being transmitted
to bone will require numerical analysis. To be able to run such an analysis will
require material models for the soft-tissue constituents of the heel pad. Here we
develop a viscoelastic material model for the human calcaneal fat pad.

Although the fractional calculus’ has enjoyed wide application in synthetic
polymer rheology (see Podlubny 1999, pp. 268—277, for a brief literature review),
it has attracted limited attention in the field of biomechanics: Suki et al. (1994)
found the pressure/volume response of a whole lung to be aptly characterized by
a Newtonian rov material model with a fractional order of evolution of 0.1;* his

' Calculus is the study of properties of functions in one or more variables, using derivatives
and integrals. Fractional calculus extends the classic study of integer-order derivatives and
integrals to include derivatives and integrals of non-integer order, e.g,, d™y /dx ™.

? For the Newtonian Fov model, a fractional order of evolution equaling 1 is the limiting
case of a viscous Newtonian fluid, while a fractional order of evolution equaling o is the
limiting case of an elastic Hookean solid.
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colleagues, Yuan et al. (1997, 2000), studied lung tissue and found its fractional or-
der of evolution to be about the same, viz., 0.075; while Chen et al. (2004) applied
the same model to agarose gels used for culturing tissues, especially cartilage, and
found its value to be about 0.03. These are all values close to that of ideal elas-
ticity, where the order of evolution is 0. In a study of charge dynamics in protein
molecules, Glockle and Nonnenmacher (1995) derived a kinetic equation in the
form of a fractional-order integral equation (i.e., a Volterra equation of the second
kind with an Abel power-law kernel) and found the charge relaxation in myoglobin
to be accurately described by a formula where the fractional order of evolution was
set at -0.4.3 In papers by Carew et al. (2003) and Doehring et al. (2004), the response
of aortic heart valves to 1D experiments has been shown to be well represented by
a quasi-lineart Kelvin-Zener rov solid with the fractional order of evolution being
about 0.25.

In this paper, we present a K-BKz viscoelastic model tailored to the response
of the human calcaneal fat pad loaded in compression. The paper begins with a
presentation of the kinematic fields needed to construct such a theory. A novel class
of nonlinear elastic solids is then presented that has great potential in the model-
ing of soft tissues. We use the arc information theoretic (Burnham and Anderson
2002) to select a ‘best” model for the heel pad based on the compression data of
Miller-Young et al. (2002)—a power-law model was found to be best. A review of
1D Fov restricted to infinitesimal strains follows, which is then transformed into
an equivalent Boltzmann integral equation with a memory-function kernel. This
formulation is useful in that it permits an extension into 3D by applying the k-Bkz
hypothesis to construct a finite-strain theory. This hypothesis employs the elastic
strain-energy function (previously selected) to establish the tensorial structure of
the viscoelastic model. Like our elastic material class, there are many candidate
models that belong to our viscoelastic material class. In addition to the Fov kernel,
four other kernel functions are considered as candidate models. The aic informa-
tion theoretic was then used once again to select a ‘best’ model, this time based on
the stress-relaxation experiment of Miller-Young et al. (2002). A regularized frac-
tional derivative (RFD), introduced in App. B, was found to be the best viscoelastic
kernel.

Appendices are provided that: A, describe how to use the arc information theo-
retic; B, list the candidate viscoelastic kernels; C, derive our viscoelastic constitutive
formula using convected tensor fields, and establish how such formulae map into
Cartesian space; and D, list series expansions that allow finite-strain constitutive
formula to be recast as infinitesimal-strain constitutive formulz.

3 Fractional-order integration and differentiation can be defined as a single operator that
is continuous over the order parameter; hence, the term differ-integration (Oldham and
Spanier 1974). The accepted notation employs a minus sign (e.g, -0.4) when designating the
order of integration, and a plus sign (viz., 0.4) when designating the order of differentiation.

4 A viscoelastic model is said to be ‘quasi-linear’ if: the linear strain (or forcing function)
of classic (linear) viscoelasticity is replaced by a nonlinear strain measure, the kernel (or
memory) function depends solely on time (i.e., strain-time separability applies), and only a
first-order integral over time appears in the model. K-Bkz models are quasi-linear.
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2 Kinematics

Consider a rectangular Cartesian coordinate system with orthonormal base vectors
e1, e3 and e3. We focus our attention on a mass point originally located by the set
of coordinates X = (Xi, X2, X3) assigned at an arbitrary reference time fy in
this coordinate frame. At current time 7, this mass element is located by a different
set of coordinates x = (X1, X2, x3) in the same coordinate frame, while at some
intermediate time—say s, fp < § < t—it had coordinates x = (X1, X2, X3)-

It is supposed that the motion of this mass point through space can be described
by a one-parameter family (in time) of locations considered to be continuous and
sufficiently differentiable to allow the following deformation gradients to be defined

8)6,‘ -~ . 8)6,‘ = . 8)(,‘

Fii(tg,t) ' = —, ij = 5
11(0 ) an 8Xj

where indices i and j have values 1, 2, 3. Here these formula have been written in
component form; in tensor notation they are written as

F:F,-je,-®ej, ﬁ:ﬁije,-@ej, f:f,-je,-@ej, (2)

where ® is the vector outer product. These fields satisfy the identity F = F F, or
equivalently, F;; = ﬁ,-k ﬁk ; where the repeated k index is summed over in the
usual manner. The ability to invert these fields, guaranteed by the conservation of
mass, ensures that a given particle cannot occupy two locations at the same instant
in time, and that two discrete locations do not associate with a single particle at any
given moment in time.

Deformation fields are two-state fields that can be scalar, vector or tensor val-
ued. Hereafter, arguments denoting the state dependence of these fields are omitted
for brevity, at least for the most part. Instead, as in Eq. (2), plain-symboled deforma-
tion fields are considered to have a state dependence of (¢, t); hatted deformation
fields are considered to have a state dependence of (s, ¢); and tilded deformation
fields are considered to have a state dependence of (¢o, ).

Affiliated with the above deformation gradients are the left- and right-defor-
mation tensors defined by

B:=FF' and C:=F'F, (3)

respectively, where ik implies transpose (viz., Bjj = Fix Fjx and Cjj = Fy; Fy;j).
By B we mean ffT, etc. The left-deformation tensor B of Finger (1894) typically
appears in Eulerian constructions, while the right-deformation tensor C of Green
(1841) typically appears in Lagrangian constructions.

For model implementation into numerical codes, like finite elements, it is of-
ten useful to split the deformation variables into hydrostatic and deviatoric parts.
Following Flory (1961), we assign

J:= detF, F:=J '5F, C:=F'F, B:=FF', @)
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so that detF = 1, and therefore, det C = detB = 1, where det(-) denotes the

determinant. Likewise, one can define

J = detF, I3 = J'/3F, (CT = IQ?TF, ﬁ = l:?l,_;T, (5)
and ~ ~ ~ ~ ~ = = = = ==
J:=detF, F:=J '’F, C:=F'F, B:=FF', (6)

so that det F = detF = 1. A bar over a tensorial deformation field implies that it
is isochoric (preserves volume), while a hat or a tilde on top of that designates the
state in which it is isochoric.

3 Elasticity

Before one can construct a viscoelastic model for soft tissues, it is necessary to
quantify the highly nonlinear elastic behavior that dominates soft-tissue response.
Specifically, what we are after is the mathematical form of the elastic strain-energy
function for the material of interest; herein, the human heel pad. Different tissues
are typically governed by different strain-energy functions.

The strain-energy density per unit mass, when written for the Lagrangian
frame, is given by

dw = 1 tr(SdC), (7)
200

where tr(:) is the trace operator, while dW (X ; to, ¢, df) represents the work done
over a time increment d¢ on a material element with mass density 0 = o(x;1),
where 09 = 0(X ;). Work is caused by an imposed displacement acting on the
mass element, manifested here as the strain increment %dC (X;t9,t,dt). The ma-
terial responds to this displacement through the creation of forces, thereby produc-
ing a state of stress S(X; 7o, ¢). It follows that 4 = detF from the conservation of
mass.

Elastic states occur at minima in the strain-energy function W. Therefore, an
incompressible elastic solid is defined in the Eulerian frame by the constitutive law

IW(C)
aC

where the isochoric constraint for incompressibility, det F = 1, is introduced into

T+pl=2F F', detF =1, 8)

the formula through a Lagrange multiplier g multiplying the identity tensor I. Soft
tissues are comprised primarily of water, whose bulk modulus is 2.2 GPa. Most of
these tissues have shear moduli that typically range between a kPa and 10’s of
MPa. Consequently, the ratio of their bulk to shear moduli usually lies between
100 and 100,000, depending on the tissue, making incompressibility a reasonable
assumption to impose for these tissues. An application of the push-forward operator
(Holzapfel 2000, pp. 82-84) transforms the Lagrangian form of this law, which one
obtains by minimizing Eq. (7), into the Eulerian expression presented in Eq. (8).
The second Piola-KirchhofT stress S maps into the Cauchy stress T (x; #) according
to the well-known formula T = ZFSF .
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There are two non-trivial invariants needed to describe an isotropic, incom-
pressible, elastic solid (Rivlin 1948); they are:

I=vC=tB & I=}((rC)’~t(C?))=twrC'=uB™. (

Clonsequently, the tensorial dependence of W(C) can be replaced by a scalar one of
W(I, Il'). The strain-energy function W will also depend on a number of material
constants. The third invariant is a trivial argument, because I = detC = 1
from the incompressibility assumption. We will reintroduce the third invariant in
§5. An application of the Cayley-Hamilton theorem proves the identity %((tl’ C)>—
tl’(Cz)) = tr C~! provided that det C = 1, which follows from incompressibility.

We are not free to assign any functional form of our choosing to the strain-
energy function. Material stability needs to be taken into consideration. This is
especially important so as not to inadvertently incite numeric instability into soft-
ware codes like finite elements. A critical hypothesis needed for well-posedness of
such initial value problems is that the equation of motion be hyperbolic or, equiv-
alently, that the corresponding quasi-static constitutive equation be elliptic. In this
regard, Renardy (1985) proved a lemma that establishes a sufficient condition for
strong ellipticity in a k-BKz fluid that has relevance in elasticity as-well-as in K-Bkz
viscoelasticity whenever both invariants I and II' are active.

Lemma 1 A4 sufficient condition for strong ellipticity in an incompressible, isotropic, elastic solid
is that its strain-energy function be strictly: monotone in I and II , and convex in NT and VI

The monotonicity part of Renardy’s lemma mandates that the gradients of the
strain-energy function (taken with respect to I and II') must be positive; that s,

W>0 and %—IZ>0. (10)

The convexity part of his lemma mandates that the Hessian of the strain-energy
function (taken with respect to VT and VI ) must be positive definite, which via
Sylvester’s theorem (a.k.a. the criterion of Hurwitz) requires that

2w . 2w R2wW (a2W )2

_— >
NI IVIT

and > (11)

(Bv/T1)? (BvT1)* (VT
An important example of a strain-energy function that satisfies this lemma is the
sum W oc I + II. Simple counterexamples that do not satisfy this lemma include:
the product W o< I II, which is monotonic but not convex; the ratio W o I/1I,
which is neither monotonic nor convex; and the product sum W o< 121l + I II?,
which is monotonic but not convex in a large region surrounding the stress-free
state where B = I. Many other counterexamples can also be constructed.

Rivlin and Saunders (1951) introduced a phenomenological class of incompress-
ible elastic solids whose strain-energy function is given by

oo

20Wmr =Y. Cap(I =3I —3)P. Coo =0, (12)
a=0,8=0
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where the Cyg are material constants to be obtained through parameter estima-
tion procedures. The literature often refers to this as the Mooney-Rivlin solid. The
neo-Hookean solid (derived from statistical molecular physics) has a non-zero coef-
ficient for Cjg, while the phenomenological Mooney solid has non-zero coefficients
for Cyo and Co; (Treloar 1975, pp. 212—213). Both are popular models in the rubber
elasticity literature. To satisfy Lemma 1, the coeflicients in the neo-Hookean and
Mooney solids must all be positive valued. Mixed coeflicients Cyg, where o > 0
and B > 0, associate with terms that do not satisfy Lemma 1, in general.

We propose an alternative phenomenological class of incompressible elastic
solids that satisfies Lemma 1, and which finds application in biological tissues. El-
ements of this material class have gradients of strain energy that produce formula
for stress T that are proportional to strain fields (e.g., %(B — B™1) in the simplest
case). It is the tensorial strain measure that becomes 0 whenever B = I in our
material class. In contrast, the Mooney-Rivlin class of elastic solids in Eq. (12) pro-
duces formule for T that are proportional to the deformation fields B and —B~1,
and as such, they rely on the Lagrange multiplier o in Eq. (8) to absorb all resid-
ual strain occurring at B = I. This is permissible, mathematically; it is just not
desirable, physically, in our opinion.

The Eulerian strain tensor %(B —B™!) has a symmetry in its dependence upon
state. It is also a second-order accurate approximation to the true strain measure
of Hencky;, viz., % INB (Freed 2004). Contrast this with the un-symmetric Eulerian
strain measures of Signorini (1930) %(B —1I) and Almansi (1911) %(I —B™!) that are
prevalent in the literature, both of which are first-order accurate approximations
to Hencky strain. Einstein et al. (In press) and Freed et al. (In press) have found
%(B —B™!) to be a good strain measure for quantifying the response of the ground
substance matrix in soft-tissue mechanics, where they employed this Eulerian strain
measure in its Lagrangian representation which reads %(I —C™2).

Whenever an invariant appears by itself in a strain-energy function, a defor-
mation tensor ensues. Whenever the invariant sum I + II appears, a strain tensor
is produced. Our material class is a generalization of this invariant sum, keeping in
mind the constraints of Lemma 1. Let us consider a class of incompressible elastic
materials whose strain-energy function is given by

20W = p5(f(pi: D) = f(p1:3) + f(p2: 1) — f(p2:3)). (13)

where p (> 0) is the elastic shear modulus with units of stress, and p; is a vector
of parameters, which may have different values when associated with 7 and 1.
Function f is any dimensionless function that satisfies the following constraints:

physies: f(p1; 1) =0 & f(pa; l) =0,
Spi3)=18& [fl(p23)=1,
monotonacity:  f'(p1;1) >0 & f'(pa; M) >0, (14)
comvexity:  f'(p1; 1) +21f"(p1; 1) >0 &
S (pas ) + 20 f" (pa; IT) > 0,
where f7(x) :=df(x)/dx and f”(x):= d?>f(x)/dx2. The f(p;:3) present in

Eq. (13) are constants introduced to normalize the strain energy so that W > 0.
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The definition for strain energy given in Eq. (13), in conjunction with the defin-
ing law for incompressible elasticity stated in Eq. (8), lead to an elastic constitutive
equation in the Eulerian frame of

T+el=upi(/"(pr:)B— f(p: I)B™"), detF =1, (15)
that when pulled back into the Lagrangian frame becomes
S+9C ' =puz(/"(p:DI—f(p:)CT?), detF =1,  (16)

recalling that 0 = @o because detF = 1. The 1/4 is introduced here so that
whenever f’ = 1 the above equation reducesto T+p 1 = p % (B—B_l), wherein
1 now corresponds with the classic definition of Lamé’s elastic shear modulus in
the domain of infinitesimal strains. This physical interpretation of  applies to all
models in our material class, because of the second line of constraints in Eq. (14).
These same constraints also ensure that the right-hand side of Eq. (15) becomes 0
whenever B = I, i.e., the right-hand side is a strain measure independent of .

Choosing a functional form for f* that is in accordance with the constraints put
forth in Eq. (14) will lead to an admissible constitutive equation for the modeling of
elastic solids.

3-1 Human Heel Pad

Few tissues in the human body are isotropic. The calcaneal fat pad in our feet
has been demonstrated via experiment to be isotropic (Miller-Young 2003). This
makes the heel pad an ideal tissue to work with for the purpose of deciphering
mathematical structure, and to assess capability of the arc information theoretic in
model selection through multi-model inference—a technology reviewed in App. A.
Extending the structure of our model to anisotropic tissues is a topic for future
work.

There are a variety of functional forms for f* that one could investigate which
will satisfy the constraints laid down in Eq. (14). We shall consider four models
constructed from the following two basic mathematical functions:

f)=gmgx" n>0.  xe{l/3.1/3},

f(x) =1, n>0 xe{l—31-3}. )

Parameter @ is common to all models, while the parameter vectors p; are equal
(e, p1 = p2 = {n}) in two of the models, and distinct (viz., p1 = {n;} and
P2 = {n2}) in the other two models. The power law has a long history in tissue
mechanics, dating back to Mitton (1945). More prominent in the biomechanics
literature of today is the exponential law advocated by Fung (1967).

We proceed by acquiring maximum log-likelihood estimates for the unknown
material parameters in each of the four candidate models, along with a suite of
statistical parameters: the objective function @, the coeflicient of variation in the
data o, the arc information theoretic i, and the atc difference A;, as defined in
App. A. These values have been tabulated in Table 1. Quasi-static and dynamic
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S (x) | pgs kPa)  payn (kPa) n ny ) o e Aj
x" 0.691 2.214 2.5 Ny =ny | 55662 0.2%95 1750 O
x" 0.685 2.177 5.08 1.29 5.5414  0.2390 1767 1.7
enx 0.700 2.274 0708 np =ny | 56306 0.2409 176.1 LI
g 0.692 2.227 1.40 0.405 5.5722  0.2397 177.3 2.3

Table 1 Optimized parameters [lqs, Udyn, 721 and ny for the quasi-static and dynamic
elastic responses of the human calcaneal fat pad in unconfined compression, cf. Figs. (1 & 2).
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3 | ]
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%.5 0.6 0.7 0.8 0.9 1
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Figure 1 Quasi-static stress/stretch response to 50% deformation at A=—-10"3s"1 Ex-

perimental mean and standard deviation data (obtained from 10 feet) are from Miller-Young
(2003).

experiments were fit simultaneously—see Figs. (1 & 2). It was postulated and ver-
ified that only the shear modulus p exhibits a rate dependence, whereas 7 is rate
Insensitive in a statistical sense, which is why there are two shear moduli reported
in Table 1; they are the shear moduli belonging to these two experiments, and are
not to be confused with the viscoelastic rubbery ftoo and glassy (o shear moduli
introduced in the next section.

By employing the methodology from information theory presented in App. A,
an examination of the data presented in Table 1 allows one to conclude that the
power-law and exponential models are both ‘good’ candidates for the modeling of
unconfined compression in the human heel pad, with the power-law being only
slightly better in this instance. The power law has an additional practical advan-
tage over the exponential in that it is more efficient and robust in a finite element
setting. For both function types, the models with n1 = n, were found to be supe-
rior to their affiliated models where 71 7 n,. The additional parameter present
in the models where n; # ny brought no added value to these models from the
perspective of information theory, allowing the simpler models where n1 = n5 to
be selected. Herein lies the true worth of the arc information theoretic: models
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Figure 2 Dynamic stress/stretch response to 50% deformation at A= 35571 Exper-

imental mean and standard deviation data (obtained from 7 feet) are from Miller-Young
(2003).

with differing numbers of material parameters can be assessed objectively to deter-
mine which is best. Aic provides a metric for the Kullback-Leibler (kL) information
space by which distances can be measured between various mathematical models
(via the a1c differences A;) whose parameters are all fit against a common data set.

Fits of the power-law model (using Eqs. 15 & 17 with 11 = n5) to the quasi-static
and dynamic, experimental data sets of Miller-Young et al. (2002) can be found
in Figs. 1 & 2. Although not perfect, these fits are within experimental variation
up to about 45% compression (A = 0.65). There is too much curvature in the
model to correlate the quasi-static data with exacting precision. In contrast, there
is not enough curvature in the model to accurately correlate the dynamic data. The
model should therefore provide reasonable approximations of reality over a wide
range in dynamic input. Placing 95% confidence intervals around the parameters
of this fit (see Eq. A4) puts n € [2.30, 2.85], while 14 € [0.48,0.90] kPa and prqgyn €
[1.55,2.89] kPa. These are maximum-likelihood confidence intervals, which need
not be symmetric about their optimum values, as is the case with least-squares
confidence intervals.

4 1D FOV

In landmark papers by Caputo and Mainardi (1971a, b), the authors analytically
continued the standard viscoelastic solid (Zener 1948, pg. 43)

[1+D]o(t) = Eco[1 + pDJe(t). 0o+ = Eaolp/Degt. (18
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by replacing its derivatives in time D f'(¢) := d/'(¢)/ 0t with the Caputo (1967) frac-
tional derivative of order « in time (cf. Podlubny 1999, pp. 78-81)°

| L Df(s)

DLr@):= r(l—a) ), «—s)»

ds, O<a<l1, t>1, (19)

thereby producing the constitutive equation
[+ Do () = Ewo[1 + p"D2Je(0). 09+ = Eoo(p/7) cot.  (20)

that we call the standard rov solid®, which becomes the Kelvin-Zener viscoelastic
solid listed in Eq. (18) whenever @ = 1. Variables 0 and ¢ represent engineering
stress and strain, respectively, with og+ 1= 0(ty+) and €+ := €(ty+) specifying
their initial conditions at time f4+ (= #o + &, where ¢ is a small positive number).
This 1D model has four material constants: Eo (> 0) denotes the rubbery elastic
modulus, o (0 < a < 1) is the fractional order of evolution, T (> 0) represents the
characteristic relaxation time, and p (> ) is the characteristic retardation time,
with Eg = (p/1)* Ex (> Eo) establishing the glassy elastic modulus.

Bagley and Torvik (1986) have shown that the fractional orders of differenti-
ation for stress and strain must be equal, as originally proposed by Caputo and
Mainardi (1971a), in order to ensure that this constitutive relationship is compati-
ble with the second law of thermodynamics; specifically, they must be equal so as
to guarantee non-negative dissipation during cyclic loadings.

Having unequal fractional derivatives on the two sides of the equation also in-
troduces unbalanced shocks into the solution arising from the initial conditions,
and is most evident in the Laplace domain (Bagley and Calico 1991). Shocks need
to be in balance in order for the predicted stress waves to travel with finite veloc-
ity, in accordance with physical observations. Not all Fov models possess balanced
shocks; for example, the popular Voigt Fov solid o (¢) = E [l + p* D‘f]e(t) intro-
duced by Caputo (1967) has an unbalanced shock, and as such, predicts that stress
waves will travel with infinite velocity. Material models whose stress waves are pre-
dicted to travel with infinite velocity are a known source of numeric instability in
finite element codes that account for inertial effects (Belytschko et al. 2000, pg.

314).

5 In App. B we introduce a kernel that regularizes the fractional derivative so that Eq. (19),
for 0 < a < 1, takes on the form

1 © Df(s)
F(l—a) Ji (t+6—5)%

D§ f(t) = ds, 6>0, 6/(t—1) <1,
where § is a small positive number (relative to #) that effectively takes the singularity at the
upper limit of integration in the Caputo derivative (19) and moves it a minute distance &

outside the interval of integration. See §4 in App. B for more details.
6 The standard rov fluid is defined by

[1+%D%]o () = n*D%e(r), g+ = (1/0) %+

where 1 (> 0) is the viscosity, T (> 0) is its characteristic relaxation time, and & (0 < o < 1)
is the fractional order of evolution.
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A robust and efficient numerical algorithm capable of solving the fractional-
order differential equation presented in Eq. (20) has been published by Diethelm
et al. (2002, 2004, 2005).

4.1 Relaxation-Function Formulation

An analytic solution to the standard rov solid (Eq. 20) was obtained by Caputo
and Mainardi (1971a) through an application of the method of Laplace transforms.
They are able to apply this technique to Eq. (20) because it is a linear differential
equation, albeit of fractional order. The solution they arrived at is a special case
of Boltzmann (1874) viscoelasticity, commonly written as (cf. Christensen 1971, pp.

3-9)

!
0
o(t) = G(1) €gr + / - ) 2 g (21)
tot as
Scaling the relaxation function G() so that it reads as
G(1) = Eco + (Eo — Exo) G(1), (22)

with the normalized relaxation function G (¢) constrained so that Gy := G(0) = 1
and G := G(00) = 0,7 allows one to rewrite Eq. (21) as

0(t) = Eooe(t) + (Eo — Eoo) (G(t) ot + / G(t—s) 868(;) ds), (23)

which will describe a viscoelastic solid if Eg > Eo > 0, and a viscoelastic fluid if

Ey > Es = 0 with the lower limit of integration then set at y = —o0.
For the standard rov material models, the relaxation function has the special
form
G(t) = Ea,(=(t/0)%). (24)
with
E z) = —— o €Ry4, eR, zeC, 2
«.p(2) ;F(ﬁﬂk) + B (25)

defining the Mittag-Lefller function (cf. Podlubny 1999, pp. 16-47), wherein R de-
notes the real line, Ry the positive real line, and C the complex plane. Equation
(24) satisfies the constraints Gg = 1 and Goo = 0. The Mittag-Leftler function first
appeared as a relaxation function (Eq. 24) in a paper written by Gross (1947), where
it was introduced in an attempt to remedy inconsistencies present in the power-law
creep function. Gross did not connect the Mittag-Leffler relaxation kernel with the
fractional calculus. That took place later in the papers of Caputo and Mainardi
(1971a, b).

Relaxation functions described in terms of the Mittag-LefHler function, as occur
in phenomenological Fov models, arise naturally from the statistical mechanics of

7 A relaxation function with Gg = o0 is indicative of a material that propagates an
impulse with infinite speed (like the Voigt Fov solid), which is not physical.
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random walks made with steps taken at random intervals (Douglas 2000). Other
examples of relaxation functions that have been used in soft-tissue mechanics are
listed in App. B.

A straightforward summation of the series presented in Eq. (25) has regions
of numeric instability whenever computations are done on machines with finite
precision; therefore, equivalent expressions need to be employed in various sub-
domains of the function space to ensure an accurate computation of Ey g(z) for
all admissible values of @, B and z. Gorenflo et al. (2002) have published one such
algorithm, which is more readily available in the paper of Diethelm et al. (2005).

When the fractional order « is very small, but still greater than zero, the relax-
ation kernel G(¢) = Eq,1(—(t/1)%), plotted in Fig. g for T = 1, drops immediately
from a value of G = 1 att = 0 to a value of G &~ 1/ at t = 0%, from which it
asymptotes algebraically, and very slowly, to zero as ¢ goes toward infinity. Strictly
speaking, the Mittag-LefHler function is not defined at @ = 0. This would be the
elastic boundary where, if the Mittag-Leftler function were defined, it would ex-
hibit a discontinuous jump so that at @ = 0 the response would be G = 1/ at
t =0and G = 1forallt > 0 (ie., the Heaviside unit-step function), as there is
no relaxation in the elastic limit. At the other boundary where o = 1, relaxation
1s smooth and asymptotes exponentially to zero as f moves toward infinity because
Ey1(—t/7) =et/",

For all values of & that lie within the interval (0, 1], the Mittag-Leffler function
provides a smooth monotone transition from a perfect elastic to a classic viscoelastic
response. The function is not monotone whenever o > 1.

4.2 Memory-Function Formulation

Infinitesimal strain is actually a two-state field that we can write as €(tp, t), where
time fp denotes some reference state, and time ¢ represents the deformed state.
After an integration by parts, Boltzmann’s viscoelastic model (23) becomes

o(t) = Eoe(to,t) — (Eo — Exo) /t M(t—s) e(to, 5) ds, (26)

wherein M (t —s) := dG(t —s)/0ds defines the memory function used by Lodge
(1956) in a model that he latter called the rubberlike liquid (Lodge 1964, pp. 101
104). The notion of a memory kernel was re-introduced into the biomechanics
literature by Zhu et al. (1991). The terminology ‘memory function’ is a synonym
for the ‘rate-of-relaxation function’.

By utilizing additivity of infinitesimal strains (i.e., €(?o,?) = €(fo,s) + €(s,1)
for all s € [to, t]), the above formula can be recast as

t
o(t) = (Eoo+(E0_Eoo) G(Z))E(IOJ)_{‘(EO_EOO)/ M(t—s)€(s,t)ds, (27)
to

where now the reference state is s in the strain variable that lies under the integral
sign. This is consistent with the physical notion that interval [s, ] constitutes that
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Figure 3 A 3D plot of the rov relaxation function (i.e., Eq. 24), G(t) = Eq,1(—(t/7)%),
with 7 = 1.

part of the deformation history which the material recollects, while the preceding
interval [fo, 5) represents that part of the history which the material has forgotten.
In this regard, Eq. (27) is preferred over Eq. (26) because it better reflects the un-
derlying physics, even though Eq. (26) has a simpler structure and the two formule
are equivalent. Equation (27) is also in a form amenable to the k-Bkz hypothesis.

In the testing of soft tissues, it is customary to precondition the sample prior
to executing a test (Fung 1993, pp. 260—262). This has the effect of rendering
down the non-integral viscoelastic contribution present in Eq. (27) to its quasi-static
constituent, viz., Ex€(to,?), and as such,

0(t) = Exe(ty,t) + (Eo — Exo) /t M(t—s)e(s,t)ds (28)

becomes the governing constitutive expression for preconditioned specimens.

The constitutive formulae in Eqs. (26—28) are less restrictive than the constitu-
tive formula in Eq. (23). Equations (26-28) require strain to be a C'! function (i.e.,
continuous and differentiable over the deformation history); whereas, Eq. (23) re-
quires strain to be a C? function (viz., continuous and twice differentiable over the
deformation history).

Memory fades if 0 < M(t2) < M(t) for all t, > t; > to, which is actu-

ally a thermodynamic requirement (Coleman and Mizel 1968). This constraint is
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Figure 4 A 3D plot of the rov memory function (e, Eq. 29), M(t) =
—Eg,0(=(t/1)*)/t, with T = 1 where ¢ €[0.001, 3].

satisfied by the memory function for the standard rov solid

M(l) — _M’ (29)

where, notably, Eq 0(x) appears in the memory function, while Ey 1(x) appears
in the relaxation function. The derivative dE, g(x)/dx, which is required because
of M(t —s) = 0G(t — 5)/0ds, can be found in Podlubny (1999, pg. 22), for exam-
ple. This kernel also appeared in the paper of Gross (1947), but it was written as
—dEy(—(t/7)*)/dt, where Eq(x) = Eq,1(x) is the one-parameter Mittag-Leffler
function. Gross did not make use of the two-parameter Mittag-Leffler function
Ea’ ﬂ(x).

When the fractional order « is very small, but still greater than zero, the mem-
ory kernel M (t) = —Eq,0(—(t/7)%)/t, plotted in Fig. 4 for T = 1, has a response
M that behaves like an impulse function, indicating that the material has a per-
fect knowledge of the current state. In contrast, it has virtually no recollection of
even the most recent of past states. As o approaches unity, the memory function
continues to maintain its perfect knowledge of the current state (i.e., M is infinite
att = 0, except at @ = 1, however the strength of this singularity diminishes as
o — 1). To this complete remembrance of the current state, the function then adds
an increasing recollection of past events with increasing «; albeit, this is a memory
that fades away rapidly with the passage of time.

The fact that the memory function in Eq. (29) possesses a weak singularity at
My := M (0) for all values of @ € (0, 1) needs to be taken into consideration when
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Figure 5 A 3D plot of M(1)/€" = —Eq o(—(t/7)%)/(t€7!/7) with t = 1, where 1 €
[0.001, 5], demonstrating that the Fov memory function in Eq. (29) algebraically asymptotes
to zeroast — oo for all @ € (0, 1).

selecting a numerical method for solving the convolution integral that appears in
Egs. (26-28). We have constructed a unique memory-management scheme, and
have coupled this with a midpoint quadrature rule with a Laplace end correction
to produce an efficient (i.e., O(N log N)) and accurate (viz., O(h*)) numerical al-
gorithm that solves convolution integrals like those listed in Egs. (27 & 28), wherein
the forcing function depends on both states s and ¢, instead of on just state ¢ as is
usually the case in convolution integrals (Diethelm and Freed in review).

A visual inspection of Figs. g & 4 indicates that there should be a significant nu-
merical advantage when employing the memory function defined in Eq. (29) over
its corresponding relaxation function given in Eq. (24) for the kernel of viscoelastic
convolution, provided that the singularity at the upper limit of integration can be
effectively and efficiently handled. Further inspection of Fig. 4 may mislead one to
draw a false conclusion that the standard Fov memory function fades faster than
the exponential, which is refuted in Fig. 5. For ¢ € (0, 1) and an argument ¢/t
that is less than about three, the Fov memory function does indeed collapse faster
than exponential decay, except in a neighborhood around the origin. However, as
the argument exceeds three, this trend begins to reverse and the Fov memory func-
tion starts to exhibit its true character of being algebraically asymptotic. Decay is
exponential only when o = 1.

Remark 1 The integral equation given in Eq. (27), when employing the material
functions defined in Eqgs. (24 & 29), is an equivalent representation of the fractional-
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order differential equation stated in Eq. (20): the standard rov solid. A practical
advantage of expressing FOV as a Boltzmann integral equation with a
Mittag-LefHler kernel, instead of as a fractional-order differential equa-
tion, is that a working knowledge of the fractional calculus is not re-
quired of the user in order for him/her to understand FoV to the extent
that he/she can use it with confidence to solve problems of engineering
interest. Of course, this analog only exists if the viscoelastic response is linear for
the material of interest.

5 Viscoelasticity

We now extend this 1D formulation, and in particular Eq. (27), into a 3D theory
that can be used to model soft isotropic tissues. To achieve this objective, we em-
ploy the k-Bkz hypothesis.® This hypothesis takes the potential structure for elastic-
ity arising from thermostatics and analytically continues it into neighboring states
of irreversibility where viscoelastic phenomena exist. The thermodynamic admis-
sibility of this hypothesis is discussed in a separate paper by Bernstein et al. (1964).

Because most tissues are predominantly elastic, with a secondary viscoelastic
attribute, and because the elastic response in these tissues is highly nonlinear, we
believe that the k-Bkz hypothesis has an advantage over other approaches when it
comes to developing viscoelastic models for soft tissues, the most notable alternative
approach being that of internal state-variable theory (Coleman and Gurtin 1967).

Our viscoelastic model is actually constructed in App. C using convected tensor
fields. The resulting formula are then mapped into Cartesian space-tensor formule
by using transformation rules that are also presented in App. C. The outcomes
of these transformations are the objective material models presented below: one
each for the Eulerian and Lagrangian frames of reference, and a third that applies
whenever strains are infinitesimal, whose derivation relies on the series expansions

given in App. D.

5.1 Lagrangian Formulation

A viscoelastic material model has been derived in terms of convected tensor fields
in App. C by employing the k-Bkz hypothesis. Transforming this convected model

8 Bernstein et al. (1963) state their hypothesis thusly: “For the Coleman-Noll fluid, the
stress at time ¢ depends upon the history of the relative deformation between the configu-
ration at time ¢ and all configurations at times prior to ¢. To this idea we add the following
notions: (1) The effect of the configuration at time T < 7 on the stress at time f is equivalent
to the effect of stored elastic energy with the configuration at time t as the preferred config-
uration. The effect depends on # — 7, the amount of time elapsed between time T and time
t. (2) The stress at time ¢ is the sum (integral) of all the contributions from all T < z. ... In
effect, we are taking the concept of a strain energy function associated with the theory of
finite elastic deformations, which is formulated in terms of a preferred configuration, and
incorporating it in a fluid theory of the Coleman-Noll type by treating all past configurations
as preferred configurations.”
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into Cartesian space in the Lagrangian frame, using mappings that are also pro-
vided for in this appendix, leads to a decomposition in the second Piola-Kirchhoff
stress S of the form

S+JpC =%, tr(XC) = 0, (30)

where the hydrostatic pressure p = —%J ~1tr(SC) and Lagrangian extra stress
¥ are given by separate constitutive formule. The extra stress is deviatoric in the
sense that tr(2C) = 0. Here we do not impose a constraint for incompressibility,
recalling that @ = J = detF = vdetC = VI from the conservation of mass.
Hydrostatic pressure is taken to be governed by the constitutive formula (C7)

p=-ki(-J7"), (31)

wherein « 1s the bulk modulus. The bulk response is not considered to be viscoelas-
tic i vivo 1n soft tissues, at least in a rate controlling sense.
The deviatoric response is taken to be governed by the constitutive equation

% = 2(too + (Ho — Hoo) G(1)J 3
x DEV[ (/" (pi; )1 = f'(p2: 1) C72)] + 2(10 — poo)d *

></t:M(t—s)DEV[%(f’(pl;Ic)E_l — f!(ps: 1) C'C (‘:—1)]ds, (52)

where DEV[-] == (-) — % tr[(-)C]C~! denotes the Lagrangian deviatoric operator,
while ftoo and pig are the rubbery and glassy shear-moduli, respectively. Time #g is
associated with a stress-free equilibrium state.

The relaxation G and memory M functions can be of whatever form one
chooses (cf. App. B). They are not specified by the construction, only constrained
in that M (t—s) = 0G(t—s)/0s,0 < M(t;) < M(ty) forallt, > t; > ty, Gy = 1
and G = 0. Whenever G and M are given by Eqgs. (24 & 29), respectively, Eq.
(32) becomes a 3D Fov material model.

The elastic function f is left unspecified by the general construction, too. It
1s, however, constrained by Eq. (14) so that the overall model satisfies the k-Bkz
stability criterion of Renardy (1985).

5.2 Eulerian Formulation

Mapping the convected model derived in App. C into Cartesian space in the Eu-
lerian frame yields a decomposition in the Kirchhoff stress P (X; #o, ) of the form

P+Jpl=0, trI=0, (33)

where the hydrostatic pressure p = — %trT = —%J ~!trP and the Eulerian
extra stress Il are governed by separate constitutive formule. The Kirchhof stress
P relates to the Cauchy stress T via the well-known identity P = % T so that
P = FSF". The Eulerian extra stress is deviatoric in an Eulerian sense in that

trII = 0.
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The hydrostatic pressure p is still governed by Eq. (31). The Lagrangian extra
stress X of Eq. (32) pushes forward into the Eulerian frame (ie., I = FXFT)
producing

I = 2(thoo + (10 — Hoo) G(1)) dev[ 1 (/' (p1: 1) B — f'(p2: 1) B™')]

+ 2010 = o) [ M=) ded[ (D) B - £ 1B |05, G

wherein dev[-] := (-) — % tr(-) I denotes the Eulerian deviatoric operator.
The structure of the Eulerian model should be more intuitive than its La-
grangian counterpart, at least for most people.

5.3 Infinitesimal-Strain Formulation

The theoretical constructions of this paper are geared for soft biological tissues.
In the case of hard biological tissues, like bone, and many engineered materials,
like plastics, infinitesimal strain analysis suffices. For these materials, the previous
model simplifies to an expression for engineering stress ¢ of the form

o+pl=2%, trX =0, (35)
where the hydrostatic pressure p = —%tl’o is governed by
p = —«klre, (36)

and the deviatoric stress X' is described by

¥ = 2(jtoo + (10 — f1oo) G(1)) devie] + 2(1t0 — j1oo) / M(t—s) dev[e] ds. (37)

where € = €(f, t) denotes engineering strain, with € = €(s,1) = € — € given that
€ =€(ty, ).

Equations (35-37) were obtained by applying the approximation formule listed
in App. D to the above stated model in either its Lagrangian or Eulerian represen-
tation, it does not matter which.

5.4 Human Heel Pad

As an example of an isotropic viscoelastic tissue, we consider the human calcaneal
fat pad; in particular, the experimental data of Miller-Young et al. (2002). The cri-
terion of isotropy was experimentally verified, and an assumption of incompress-
ibility has been imposed. Contrary to most soft-tissue testing, their experiments
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were not preconditioned. The experiments were done in unconfined compression,

and under these boundary conditions Egs. (33 & g4) simplify to

F v
Tii=— =~ =2(koo + (Lo — foo) G(1))
A Ao

X 3(S"(prs D2 =27 + f1(p2i M) (b = A72)) + 2(ko — ftoo)

x / M=) L(f'(pr: D) A2 =AY + f/(p2: ) (h—A72)) ds, (38)

where I = A% + 207V and I = 2\ + A 72 establish the two invariants under
incompressible uniaxial loading conditions, with A being replaced by A in [ and
I , which are arguments in f’. Here F is the applied force, 49 and A are the
initial and current cross-sectional areas, and A = £/£¢ and A= /s are the
two stretches present, with £o, {5 and £ representing the initial, intermediate and
current gage lengths of the specimen, respectively.

Because the loading history was not recorded by Miller-Young (2003) for their
stress-relaxation experiment, we were forced to impose an idealized loading history.
This is not desirable (Dochring et al. 2004; Gimbel et al. 2004), but it is the best
one can do in this case. A deformation rate of A = —100s™! was assumed, which
1s in the vicinity of the uppermost capabilities of modern servo-hydraulic testing
equipment. This rate was applied for 0.004 s to produce a final stretch of A = 0.6
that was then held fixed for one minute. This loading history allows the integral in
Eq. (38) to be decomposed into the sum of two integrals. The first integral is over
the interval of loading ¢ € [to, #1], and the second integral is over of the interval of
relaxation ¢ € [t1, t2]. For this particular experiment, tp = 0's, 1 = 0.004 s and
t, = 60 s. The advantage of breaking the integral into a sum of two integrals is that
the second integral vanishes under the boundary conditions of stress relaxation,
because A = 1 forall s € [t1, 12], and therefore, the forcing function (viz., strain
from s to ?) is zero over the entire region [f1, #3]. All arguments ¢ in the integrand
of Eq. (38) remain ¢ whenever ¢ > #;. Only the upper limit of integration gets
changed from 7 to #; in the contributing integral.

Following the method of approach used to select an elastic model, first a set of
candidate viscoelastic kernels was chosen, and then the a1c information theoretic
of App. A was employed to down-select the better models at describing a speci-
fied experimental data set; in this case, the stress-relaxation experiment of Miller-
Young et al. (2002). The set of candidate models chosen for consideration includes:
FOV, GMM, Kww, QLV and RFD, of which Fov was detailed in §4 while the latter four
kernels have been described in App. B.

Because the loading data were not recorded, we assigned a value of 2.6 to the
exponent 7 in the previously selected elastic power-law function f/(x) = x" of
Eq. (17), where no distinction is made between pi and p», i.e., p1 = p2» = {n}.
This value is in agreement with our findings from fitting the elastic data, and with
the observation that it is the shear modulus p, not the strain exponent 7, that ex-
hibits rate dependence. In all models except amm, this leaves four parameters to be
obtained via parameter estimation techniques, whose values are listed in Table 2.
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Model | poo (kPa) g (kPa) c1 c ] o Hare A
FOV 0.707 4.04 0.472 0389 | 0.00143 o0.0114 -50.1  §.I
KWW 0.92I 4.64 0.263  0.272 | 0.00166 o0.0123 484 4.8
QLV 0.965 3.41 0.0059  31.8 | 0.00229 0.0144 -44.9 8.3
RFD 0.711 3.79 0.366  0.069 | 0.00108 0.0009 -53.2 O

Table 2 Optimized shear moduli (too and ftg, and viscoelastic kernel parameters denoted
as ¢1 and ¢; (see the body of the text for the mappings to their specific model parameters)
for a stress relaxation of the human calcaneal fat pad, cf. Fig. (6).

Parameters in common betwixt all five models include the rubbery (1o and
glassy po elastic shear moduli, and the elastic stretch exponent n = 2.6. Except
for emm, each kernel has a relaxation/memory function pair with two material
parameters that we denote as ¢; and c¢3 in Table 2. These are not the notations
that exist elsewhere in this paper, so here we establish their mappings and their
units: For rov, ¢1 := « and ¢, 1= 7 (s); for kww, ¢ := B and ¢, := 7 (s); for QLv,
c1 =11 (s)and ¢ := 17 (s); and for RFD, €1 := & and ¢ 1= § (s).

According to the selection criteria put forth in App. A, RFD 1s a ‘good’ model
for inference, Fov lies on the boundary between ‘good’ and ‘mediocre’, while both
kww and QLv are ‘mediocre’ models in this regard for this material. Given this
fact, rRFD 1s the model of choice. The computational effort required to evaluate
the rRFD kernel is less than the computational effort required to evaluate any of
the other kernels—an added bonus. The ability of RFD to correlate these data is
demonstrated in Fig. 6. We reiterate that this selection process is based on the
a priort assigned set of candidate models, and on the experimental data set chosen
to fit. Different results are likely to follow given different materials, data sets and
candidate models.

This outcome of RFD being the ‘best’ model for inference came as somewhat
of a surprise to us. Our personal bias going into this exercise would have been
to select the Fov kernel; this bias being based on many physically sound reasons.
Biomechanicians would be apt to preselect oLv based on the biases of their back-
grounds. The fact that QLv 1s not a good model for plantar soft tissue agrees with
the recent findings of Ledoux et al. (2004). The capability of the RFD kernel, which
is a generalization of the s1rs kernel proposed by Johnson et al. (1996), and the ease
by which it can be computed cannot be disputed. Other than around the origin,
the rFD kernel is not all that different from the Abel kernel of the fractional deriva-
tive present in the Voigt Fov model, or the Mittag-Leffler kernel present in of the
Kelvin-Zener rov model derived in §4, but it is a lot easier to work with. In effect,
the rFD kernel slides the singularity at the upper limit of integration in the Voigt
Fov kernel so that it lies just outside the integral by a small distance of §. We coined
the acronym RFD from the phrase regularized fractional derivative, because it behaves
like an Abel kernel whenever ¢ 3> §, but it does not propagate a shock wave with
infinite velocity like the Voigt Fov kernel does due to the regularization imposed on
the rFD kernel, viz., Gy = 1 for the RFD relaxation function.
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Figure 6 Stress relaxation response at 40% deformation (A = 0.6). Experimental mean
and standard deviation data (obtained from 7 feet) are from Miller-Young (2003). The mean
maximum true stress was -12.7 kPa.

For the rFD model, placing 95% confidence intervals around the parameters
puts: Ueo € [0.702,0.721] (kPa), ;o € [3.75,3.83] (kPa), o € [0.363,0.369] and
8 € [0.066,0.072] (s), with n fixed at 2.6 in accordance with our elastic findings.
These confidence intervals are very tight when contrasted with those obtained for
the elastic model. This is because of the high precision of fit attained with the relax-
ation data, as contrasted with the more moderate fit achieved with the compression
data. The above confidence interval for jteo lies within the confidence interval for
[4qs obtained in §3, implying consistency between the data sets.

Conspicuously absent from the prior discussion is the eMM model, which is
the de facto standard of the viscoelastic literature at large. The number of Maxwell
chains (i.e., MM elements) considered will affect the number of material parameters
present in any given MM model. It is not uncommon in the literature to find in-
vestigators using upwards of 7 to 10 Maxwell elements in order to get a reasonable
fit to a given set of experimental data. Nowhere, to our knowledge, has the aic
information theoretic been employed to answer the question: How many elements
yield the ‘best’ Maxwell model for a given data set?

However, this very question has been asked, and answered, from the viewpoint
of statistics, where the meter stick has been the minimum of some objective func-
tion. The outcome of this process is the 7 to 10 MM elements that are typically
employed, with the actual number of Maxwell chains needed in any given instance
being dependent upon the actual data being fit.

We now answer this same question using AIC as the meter stick. Arc i1s a mar-
riage between statistics and information theory—see App. A for an overview—that
enables multi-model inference. Presented in Table g are the maximum likelihood
estimates for the parameters in three GMM models with increasing numbers of MM
elements. Table 4 presents their associated AIc statistics. If one were to use the ob-
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MM elements | oo (kPa) o (kPa) cy 71 (9) ) 73 (5) c3 73 ()
N =1 .12 3.45 1 1.16
N =2 0.992 3.76 l1—c; 0.50 0.229  10.0 — —
N =3 0.861 3.76 l—cy—c3 o045 0181 505 o0.119 47.6

Table 3 Optimized parameters (oo, Mo, T1, C2, T2, €3 and 73 for modeling stress relax-
ation in the human calcaneal fat pad using the cmum kernel function.

MM elements b o Une A
N =1 0.11748  0.1033  -8.9  44.3
N =2 0.00233 0.0146 -33.7 19.5
N =3 0.00081  0.0086 +9.6 62.8

Table 4 Ailc statistics for parameter estimates listed in Table 3.

jective function @ as the meter stick, or equivalently, the coefficient of variation o,
then N = 3 MM units is obviously ‘best’, and it is better than any of the models
presented in Table 2. Most likely, this could be improved upon still further by using
even more MM elements. However, the arc measure for multi-model inference (¢
overwhelmingly selects N = 2 as being the ‘best’ amm model for the calcaneal fat
pad. The parameters of the N = 2 oMM model best represent the ‘information’
present within the data amongst the various sMM models. Interestingly, this is the
number of Maxwell chains used by Miller-Young (2003), where she reported values
of ;1 = 0.5sand 7, = 24 5. We are in agreement on the former value but differ on
the latter. Our differing values for 7, are likely due to the fact that we obtained our
parameters from maximum log-likelihood estimates; whereas, Miller-Young ob-
tained hers from nonlinear regression estimates. We also employed different elastic
models. Furthermore, the ramp time #; that she imposed in her analysis was not
documented.

Comparing the best GMM model against any of the previous four models via
their a1c differences A; ranks the best MM as being a “poor’ material model for
inference according to the criteria put forth in App. A.

6 Summary

An elastic strain-energy function has been proposed that has great potential for the
field of tissue mechanics. An application of the a1c information theoretic lead to a
power-law form of this free energy as being the best choice for the purpose of de-
scribing compression in the human calcaneal fat pad. The elastic material behavior
associated with this free-energy function was then analytically continued into the
thermodynamically irreversible domain of viscoelasticity via the k-Bkz hypothesis.
Because the original k-Bkz theory was derived for fluids, and our application is
for solids, we took the 1D standard rov solid and converted it into an equivalent
memory-function format. This gave us the mathematical structure of an elastic/
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viscoelastic constitutive equation where strain, not strain rate, is the forcing func-
tion in the integrand, in accordance with the k-Bkz hypothesis. With this overall
mathematical structure in hand, and with the 3D tensorial structure that the k-Bkz
hypothesis provides (as applied to our elastic strain-energy function), a new class of
viscoelastic materials was derived. A second application of the a1c information the-
oretic selected the RFD (regularized fractional derivative) as being the best choice
for the relaxation/memory function kernels present in our material model for the
purpose of describing stress relaxation in the fat pads of our feet.

We have found the a1c information theoretic to be a technology of great utility
in biomechanics applications, yet it is apparently an unknown technology to this
discipline. It is therefore our hope that biomechanicians will find our explanation of
it to be straightforward and easy to exploit. Aic provides a means whereby we can
enhance our understanding of the mathematical models that we use to describe
the various behaviors that tissues exhibit.
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A Akaike Information Criterion

“Truth in the biological sciences and medicine is extremely complicated, and we
cannot hope to find exact truth or full reality from the analysis of a finite amount of
data. Thus, inference about truth must be based on a good approximating model.
Likelihood and least squares methods provide a rigorous inference theory if the
model structure is ‘given.” However, in practical scientific problems, the model is
not ‘given.” Thus, the critical issue is, ‘what is the best model to use.” This is the
model selection problem.” Burnham and Anderson (2002, pg. 47).

We have used theory to provide mathematical (tensorial) structure to a class of
material models that contains a known (finite) set of candidates. However, theory
is unable, at least in our case, to discern which candidate model is ‘best’, especially
since our models are nonlinear. We therefore desire a methodology whose outcome
will objectively select the best model from this set of candidate models when fit against
known data prone to noise. We refrain from subjectively assigning the model, which
is accepted practice in the biomechanics literature of today. Instead, we employ
the Akaike Information Ciriterion (arc)—a technology for use in model selection
via multi-model inference. Other criteria also exist, see Burnham and Anderson
(2002, pp. 65-70). A1c is based on the principle of parsimony: A compromise be-
tween bias-squared (simplicity - increases with decreasing numbers of model pa-
rameters) and variance (complexity - increases with increasing numbers of model
parameters). Aic uses maximum log-likelihood inference to obtain ‘optimum’ pa-
rameter estimates for each candidate model. These estimates, in conjunction with
the objective function, are then inputs into a Kullback-Leibler (k) information-
theoretic that is used to discern the ‘best’ model for inference, selected from the set
of fitted models. The selected ‘best model’ need not be the ‘model that fits best’.

Consider an optimization problem where:

K is the number of candidate models,

— L is the dimension of unknown parameters p = [p1, pa, ..., pL]",
— M is the dimension of state variables y = [y1, ya,..., ym]", and
; : i [yi i iqT . il
- N is the n.umber ofobs.erved .varlables yt = [y1 Voo Vil {t,,yj }j:];M’
with #; being the associated times of observation.
Consider the special case where:
1. errors between observations y* & y‘*! are independent Vi € {1,..., N—1},

2. errors in observations ! are normally distributed about the solution y (¢;, p),
with p being the optimum parameters,

3. errors between y,i and yei are independent for all k& # £ over all the 7, and

4. a constant coeflicient of variation exists in the observations y ]’ , which is inde-
pendent of j over all the 7.

If the above conditions hold, then Baker et al. (2005) have shown that the maximum
log-likelihood estimate reduces to a weighted least-squares estimate whose weights
are elements from the inverse of the covariance matrix of errors, which permits a
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dimensionless objective function to be defined as

2
ti.
B(p) = ZZ(yj( - ) A

i=1j=1 J

implying a least-squares coefficient of variation of ¢ = 1I; whereas, the maximum
likelihood estimate for the coefficient of variation in the data is given by

0% = ﬁ ®(p). (A2)

Akaike’s (cf. Burnham and Anderson 2002, pp. 60—64) measure for multi-model
inference is then quantified via

e = MN (@) +2(L + 1) + 2L ADEED, (A3)
wherein the @(p) of Eq. (A1) has been minimized to get the maximum likelihood
estimates P for the model parameters, whose dimension L may vary from model
to model; however, dimensions M and N remain fixed. The last two terms on the
right-hand side of ft4, correct for model bias in the sense of KL information theory.
The ‘best’ model for the purpose of inference is the one with the smallest or most
negative [yc.

Confidence intervals can be assigned to each parameter py in p. If we de-
min

note pe = [P1. pa..... Pe—1. P. Pet1.- .. Pr]" suchthat i € [pP™, p7™I(x}),
then confidence intervals are obtained via the formula (Venzon and Moolgavkar

1988)
MN |In(@(5y)) — In(@(p))] < x3. (Ag)

wherein X% is the x2-distribution for 1 degree of freedom, which for the 0.95 quan-
tile is 3.841, for example. @(p¢) varies only parameter pg from optimum pina
Mn and p™ that will satisfy the equality in Eq. (A4).

For a given data set, a ‘best’ model can be obtained by employing the straight-

search for those values pj

forward methodology outlined above. But will this model be the ‘best’ for another
data set?> Maybe not. Rules have been developed that allow one to dismiss those
models that are not likely to ever be ‘best’, while retaining a subset of ‘good’ mod-
els. Begin by constructing the aic differences

K
A = Moarc; — ]rcn—”? Moarcy, - (Af))
One then applies the following rule to infer which models are ‘good’, which ones

are ‘mediocre’ and which ones are ‘poor’ (Burnham and Anderson 2002, pg. 70):

A; | Level of Empirical Support for Model i

0-2 good model
4-7 mediocre model
> 10 poor model
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It is not the absolute size of the aic measure i, that matters, but rather, it is the
relative value of the a1c difference A; that is important. The above rule is based on
the weight of evidence in favor of model i being the actual kL ‘best” model for the
problem at hand, given that one of the candidate models is actually this model; in
other words, this rule has a solid footing in information theory.

B Other Viscoelastic Kernels

Besides the Fov kernel (a relaxation/memory function pair) presented in §4, four
additional viscoelastic kernels are presented in this appendix that complete the set
of candidate viscoelastic kernels used for selecting the best model for describing
the dynamic behavior of the human heel pad using the aic methodology presented
in App. A. These are among the more popular relaxation/memory function pairs
that appear in the viscoelastic literature.

B.1 GMM Kernel

The eminently popular Maxwell model (Mm) has a generalized relaxation function
of a decaying exponential

G(1) = exp(—t/7), (B1)

whose memory function is simply

M(r) = ; (B2)

exp(—t/7)
T
with the material constant T (> 0) being called the characteristic time.
The generalized Maxwell model (GMm) is composed of a finite sum of N dis-
crete MM elements such that

N N
G(t):cheXp(—t/r,,), chzl, 0O<tn<mn<---<ty, (By
=1

n=1
whose memory function is

N

M) =Y 2 ep(—1/m), (By)

n=1

where each term in the sum can be thought of as being associated with a separate
integral. It is not always possible to obtain an unique set of parameters for this
model. The sum over all ¢, equaling 1 enforces Go = 1, while Go, = 0 follows
if 7, > 0 for all n; hence, the model obeys the principle of fading memory under
these pretenses.

Without exception (to our knowledge), MM i1s the viscoelastic kernel prepro-
grammed into commercial finite element codes that have viscoelastic material mod-
els in them. Gmum is the kernel that arises from a system of first-order differential
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equations describing viscoelasticity when derived from the theory of internal-state
variables with N internal variables (cf. Simo and Hughes 1998, Chp. 10).

Any continuous, linear, viscoelastic spectrum can be discretized, and in doing
so, can be represented with an approximating ¢Mm kernel. Fulchiron et al. (1993)
and Simhambhatla and Leonov (1993) propose using a Padé-Laplace technique to
achieve this objective. Here optimum parameters to a Padé expansion of chosen
order are acquired in the Laplace domain, where the problem is well posed. The
results are then transformed back into the time domain for use. One usually needs
about 10 Maxwell chains, i.e., 10 MM kernels or N = 10, in order to obtain an
approximation of reasonable accuracy for a continuous spectrum whose frequency
range 1s known over 7-10 decades.

In the thesis of Adolfsson (2003, paper 1), the Voigt Fov relaxation spectrum
was discretized to obtain analytic formule for the Maxwell chain coeflicients ¢,
given that t, = nt/N,n = 1,2,..., N, with 7 being the characteristic relaxation
time from the Voigt Fov model. For a typical value for o of 0.67, he found that
the normalized relaxation function predicted by 10,000 MM elements to be in about
1% error with that of the Voigt Fov relaxation function, the relaxation function
obtained by using 1000 MM elements was in about 2% error, and when 100 MM
elements were used it was in about 5% error.

B.2 KWW Kernel

A popular relaxation function from the viscoelastic liquids literature is the stretched
exponential of Kohlrausch (1847) and Williams and Watts (1970) (kww), which for
a solid is given by

G(t) = exp (—(t/7)P). (Bs)

whose memory function is

Bexp (=(t/0)?)

M(t)z ZI_B‘L'ﬂ )

(B6)
where 7 (> 0)and B (0 < 8 < 1) are the material constants.

This relaxation function is normalized in the sense that Gy = 1 and G, = 0.
The memory function is singular at the origin, i.e., My = oo (given 0 < 8 < 1),
with M (t) monotonically asymptoting towards Mo, = 0 with increasing ¢. How-
ever, if B were allowed to be greater than 1, then My = M(oo) = 0 and the
memory function would no longer be monotonic, violating the principle of fading
memory. Consequently, 0 < 8 < 1 in order for Egs. (B5 & B6) to be in accordance
with this physical principle.

B.s OLV Kernel

Quasi-linear viscoelasticity (QLv) was introduced by Fung (1971), with its relaxation
function not appearing until much later (Fung 1993, pg. 285). When written as a
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generalized relaxation function, it becomes

E(t/r2) — E((t/11)
|n(l'2/l'1) ’

with parameters 71 (> 0) and 72 (> 71) designating material constants, wherein

G@) = (B7)

E,(x) = /1 y e dy (B8)

is the exponential integral. The QrLv relaxation function satisfies Go = 1 and
Goo = 0. The memory function associated with this relaxation function is more
user friendly, it being simply

exp (—1/72) —exp (_l/fl).

M(t) = t

(Bg)

This has become the de facto standard for characterizing soft-tissue viscoelasticity in
the biomechanics literature.

One needs to be careful to distinguish between the Mittag-Leffler function
Epn(x) (especially the one-parameter Mittag-Lefller function E,(x)) and the ex-
ponential integral E,(x), all of which are their accepted notations.

The oLv relaxation function is not usually written in the above format. Specifi-
cally, Eo does not appear in the Qv literature; rather, a parameter ¢ (> 0) appears
that relates to the rubbery modulus via Eoo = Eo/[1 + ¢ In(t2/11)], where ¢ rep-
resents the height of a box relaxation spectrum that begins at time 77 and ends at
time 72. Because Mo = 1/t; —1/73 is positive, with M () monotonically decreas-
ing to 0 as  — 00, the Qrv kernel is found to be in accordance with the principle
of fading memory.

The paper of Puso and Weiss (1998) employed the eMm model, using 7 MM
kernels (Eq. B3) to represent the orv kernel (Eq. B7), so that they could approximate
QLv in a finite element code in an efficient manner.

More recently, Doehring et al. (2004) applied the oLv and Fov kernels to stress
relaxation and cyclic data obtained from heart-valve tissues, and found their er-
rors in predictive capability to be similar. Fov had an advantage over QLv in their
parameter estimation, as only two of QLv’s three parameters were observed to be
sensitive to the data. Parameter 7, was found to be insensitive, at least to relaxation
data. This is a well-known fault of orv. However, we did not experience this diffi-
culty when fitting the relaxation data for the heel pad, as 72 was found to lie within
the time interval of the relaxation experiment.

B.4 RED Kernel

Single-integral finite-strain (sIFs) viscoelasticity (Johnson et al. 1996) employs a
relaxation function of the type G () = /(6 +¢) that can be analytically continued
as a power law so that the relaxation function becomes

8 o
G() = (m) ) (B1o)
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whose affiliated memory function is just

o 8Y

MO = G

(Bir)

where @ (> 0) and § (> 0) are the material constants. Williams (1964) used this
kernel to describe the relaxation behavior of solid rocket propellants and called it
the modified power law.

Here Go = 1 and G, = 0, as required, and My = «/§ with M (¢) mono-
tonically decreasing toward Mo, = 0, thereby ensuring that RFD possesses a fading
memory kernel.

This kernel is not an Abel kernel, although it is similar in many respects. Specif-
ically, Eq. (B1o) is not the Voigt rov kernel G(¢t) = t7%/I"(1 — «) associated with
the fractional derivative in Eq. (19). In the Voigt Fov kernel Gg = 00 and G = 0,
and therefore, it is singular at the upper limit of integration. Rather, Eq. (B1o) is
a kind of regularized fractional derivative (R¥D) kernel whose relaxation function G is
normalized so that Go = 1. This is accomplished by pushing the singularity just
outside the interval of integration by a small distance 4, i.e., the singularity is moved
to ¢ + §. The Voigt rov kernel and the RrD kernel are indistinguishable at large 7.
It is only when ¢ < § that these two kernels differ significantly. Exponent « can
therefore be interpreted as a fractional order of evolution; it is the slope of the re-
laxation curve through the transition region between glassy and rubbery behavior.
Similarities and differences between the Voigt Fov and rRFD kernels have been quite
thoroughly investigated by Bagley (1987).

The rrD kernel is not the only way in which a fractional derivative can be
regularized. Two alternative methods have been proposed in the mathematical lit-
erature. The first one, completely different from the modified power law of RFD, 1s
based on a discretization of the fractional derivative—see, e.g.,, Tuan and Goren-
flo (19944, b). The second one, described by, e.g., Rubin (1996, §11) or Gorenflo
and Rubin (1994), 1s much closer to, but not identical with the rFD concept. Their
method to tackle the singularity in the Voigt kernel mentioned above is very simple:
Instead of using the full (and singular) integration range from #g to ¢ in the defi-
nition of the Caputo derivative, Eq. (19), they only integrate from #y to ¢ — § with
a certain (positive but small) regularization parameter 8, thus cutting off the part
of the interval where the singularity appears; it still occurs at time ¢. Compared
to our approach, their method has the charm that the correspondence between
the kernel (¢ — s)™® and the forcing function f(s) remains unchanged; whereas,
our scheme shifts one factor by an amount of §, but does not shift the other factor
simultaneously. This feature seems to be an advantage of the method of Gorenflo
and Rubin. On the other hand, their cut-off strategy means that in an actual com-
putation of the fractional derivative, which is supposed to be a functional with full
but fading memory, the contribution that is associated with the most recent past
(the time interval from ¢ — § to the current time #) is ignored completely; whereas,
our method retains this information.
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C Derivation of Constitutive Model

Convected tensor fields are employed in this appendix to derive our constitutive
formule, which are then transformed into Cartesian tensor equations using well-
established mapping techniques outlined in §C.2 of this appendix. This process of
deriving constitutive expressions using convected tensor fields, and then mapping
them into Cartesian space, ensures that the resulting Cartesian formula are frame
invariant. The interested reader is referred to the classic paper by Oldroyd (1950)
and the various textbooks of Lodge (1964, 1974, 1999) for a thorough treatment of
this subject matter. Apparently, Zaremba (1903) was the first to realize that the use
of convected fields automatically ensures frame indifference.

C.1 Constitutive Formulation

Clonsider a mass element & whose density is 0 = (& ¢), which is located by a set
of components (1, £2, £%) in a convected coordinate system whose numeric values
do not vary over time. Mass point & is put into a state of stress 7/ = 7/ (§;1) as
the result of a change in shape dy;; := y;; (§;¢+dt) — y;;(€;¢) imposed over an
increment in time df. This deformation induces a differential change in the work
done dW = dW(&;t,d¢t) on the mass element (including an energetic contribu-
tion associated with the kinetic energy of the mass point) that is quantified by the

formula (Lodge 1974, pp. 194-195)
1 .
dw = 2% 7 dyj, (Cr)

where repeated indices—one a subscript, the other a superscript—are summed
over in the usual manner. The stress tensor 7 has contravariant components 77/,
the metric tensor y has covariant components y;;, while the inverse metric y !
has contravariant components /. ! exists because y is symmetric and positive
definite by definition, viz., ds?(&;¢) = d&'(§) y;;(&;1) d&/ (&) where ds (> 0) is
the length of infinitesimal vector d§ at particle & and time ¢.

The metric tensor y(&;¢) of convected tensor analysis is a function of time.
This characteristic is not shared by the metric tensor g(x) of general tensor analy-
sis, which is independent of time (cf., e.g., with Sokolnikoff 1964).

Unlike Cartesian fields, which are evaluated in fixed, rectangular-Cartesian,
coordinate systems, convected body fields are evaluated in curvilinear coordinate
systems that move (i.e., convect) with the body as though the coordinate axes were
drawn onto the body.

Tensors w and y are the fundamental fields of convected tensor analysis from
which constitutive equations are constructed.

From thermostatics, Eq. (C1) leads to a potential-based constitutive equation
for the elastic state of stress characterized by (Lodge 1964, pp. 154-161)

7 =gl (C2)

iy ow oW
QQ_OT[UZQO( )s

- + -
dyij Iy
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where oo = 0(&; o). From the conservation of mass, one is lead to the expression
Q = (det (yo_ly)) "2 wherein the tensor contraction yo_ly has mixed compo-
nents y*(&:10) vk j(&;1). Symmetry in stress, a consequence of the thermostatic
potential W, is also in accordance with the conservation of angular momentum.

Following the suggestion of Flory (1961), a hydrostatic/deviatoric split in the de-
formation field is introduced in such a way that the strain energy can be decoupled
as W = W + Wy, where Wj, and Wy are the bulk and deviatoric strain energies,
respectively. This allows us to replace Eq. (C2) with a decomposition in the state of
stress given by

7l py =m0, 0v =7, Ty =0, (C3)
wherein the hydrostatic pressure p := — % 7%y is governed by the constitutive
equation

IWs(J)
= —pg —21 C
Q0 —7 (Cq)

. p— 1 . . . . .
with J = (det(yo ! y)) /2 quantifying the volume of mass point &, in a relative
sense. The extra stress IT has contravariant components [T that are deviatoric
(e, IT ke)/g k = 0), and is governed by the constitutive equation

Wa(yo,7) + MWa(yo. }_’)i|
ij i ’

Q 1 = goJ /3 Dev[ (Cs)

with Dev [V = ()7 — %[(-)ke)/gk] ¥ defining the deviatoric components of a
contravariant field. (We will not need the deviatoric operators for covariant and
mixed tensor fields.) Tensor ¥ has components 7;j := J ~7/3y;;(€;1), and is there-
fore isochoric because det(y;'¥) = 1. The argument y, in Wy is a constant
tensor field establishing the initial shape of the mass element. It is like a built-in
boundary condition.

Soft connective tissues are inherently viscoelastic. By adopting the design phi-
losophy advocated in the k-Bkz theory of viscoelasticity (Kaye 1962; Bernstein
et al. 1963), one can analytically continue the above elastic state into a viscoelastic
state by employing an appropriate expression for the strain-energy gradient as the
forcing function in the viscoelastic structure of Boltzmann (1874).

In soft-tissue mechanics, it is reasonable to assume that only the deviatoric re-
sponse is viscoelastic. There are applications where viscoelastic compressibility can
be very important (cf. Leonov 1996); however, the i vivo rate-controlling relaxation
mechanisms of soft tissues are not known to be affiliated with volume change.

C.1.1 Bulk behavior.  Soft tissues are nearly incompressible materials in that their
bulk moduli are orders of magnitude greater than their shear moduli, and as such,
it is reasonable to consider a convex pressure/volume model whose spherical en-
ergy is given by (Simo and Hughes 1998, pg. 361)

QoWb(J)zlc%(%(Jz—l)—an), (C6)
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which, from Eq. (C4), yields a symmetric expression for hydrostatic pressure of the
form

p=—k35(-J7"), (C7)

with « being the bulk modulus. Dilatation %(J -J _1) is a second-order accurate
approximation to the dilatation of Hencky (1928), viz., In J (cf. Freed 2004).

Again, the viscoelastic attributes of bulk behavior are not considered to be rate
controlling in soft-tissue mechanics. Bulk behavior is taken to be elastic, and in
many cases can be assumed to be incompressible.

C.1.2 Deviatoric behavior.  Using Eq. (27) as our template (i.e., the memory function
formulation of 1D rov), and using the k-Bkz hypothesis to establish mathematical
structure, we postulate the existence of the following general constitutive equation
for the deviatoric response of a class of viscoelastic solids

9 17 = (oo + (o — Joo) G(7))

3Wd()’0»l_’) T aWd(J’oJ_’)
0 Vij dYji
t o W (.. 7) Wy, y

X/ M(i—s) 0s 7 Dev d(i's V) . d(i’s Y)
fo Yij i

XQOJ_2/3D€‘V[ i|+(Mo—lioo)

i| ds, (C8)

where (1o and [Lo are the glassy and rubbery shear-moduli, respectively, with
y:=J 3y and ;:1 = f_2/3}', where J := (det(ys_ly)) 72 with Y, having com-
ponents y;; (§;5). Metrics ¥ and 5/_\ are isochoric in the sense that det(yo_l)_/) =
det(y;‘?) = 1; furthermore, ; = y whenever s = #y. The extra stress IT is com-
pletely described here by two material functions: Wy and G, because M (¢t —s) =
0G(t—s)/0s by definition.

The integral for extra stress in the above expression is in accordance with the
K-BKZ hypothesis: The affect of configuration s < ¢ on stress IT at time ¢ is equiv-
alent to the affect of elastic energy stored by the material with the configuration at
time § serving as its reference state, weighted by a memory function and summed
over the history of all past configurations. The integral in the theory of Kaye (1962)
and Bernstein et al. (1963) goes from —o0 to ¢; whereas, our integral goes from 7 to
t, with time fg being a stress-free equilibrium state. Their theory is for viscoelastic
fluids; our theory is for viscoelastic solids. This is why our formulation has an elas-
tic non-integral contribution, and why ours has an initial reference configuration
associated with time #g.

The constitutive assumption that we employ to describe the isotropic deviatoric
response of biological tissue 18 Eq. (13). When rewritten for an arbitrary reference
state s € [to, ?], and in terms of convected fields, it becomes

200Wi(yo.7) = M%(f(]’l; I) = f(p1;3) + f(p2: ) — f(p2; 3)),

. . e (Co)
20sWa (v, ¥) = ng (£ (p1:0) = f(pr:3) + f(pai D) = f(p2:3)).
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whose invariants are defined by

tr(ys'%). I =tr(y"y,).

tr(y;'y). =ty 'y,).

We observe in Egs. (Cg & C10) that the assigned strain-energy function weighs the

I =
2 (CIO)
I =

two states s and ¢ equally, within a constant of proportionality introduced via pi
and p». Function f is subject to the stability criteria listed in Eq. (14). After some
algebra, the above definitions transform Eq. (C8) into the following constitutive
model

% T = 2(ptoo + (10 — fhoo) G (1))
x JBEDev [(f (P D vy = £ (p DY o )] + 200 — pioo)

x /tt M(t—s) J ™3 Dev [%<f’(p1; Dyy' = f(px: D) ’2’_1”5’2’_1)] ds.
(Crr)

We leave the functional forms for f and G as unspecified at this time, recalling

that M (t —s) = 0G(t — 5)/0s.

C.2 Feld Trangfer

Field transfer is a process by which convected (body) tensor fields are mapped into
general (space) tensor fields or, as in our case, into Cartesian tensor fields. This
has been thoroughly documented by Lodge (1964, 1972, 1974), and summarized by
Freed (1995).

Because the mapping of a convected body field into a Cartesian space field is
many-to-one, we use the notation == to denote it. The underlying mathematics of
this operation are substantial and are not detailed here. They can be found in the
references cited above for the reader who is interested. The field transfer operator
is time dependent. Whenever a mapping is to be done at current time ¢, denoted as

t
=, the resulting Cartesian fields will be defined in the Eulerian frame. Likewise,

whenever field transfer is to occur at reference time ty, denoted as %, the ensuing
Cartesian fields will be defined in the Lagrangian frame.

Whenever the time dependence of the convected metric tensor y coincides
with the time of field transfer, the resulting Cartesian fields are the identity tensor I;
specifically,

t 1t to 1 o
y=1 y =1 yo=1 y, =1 (C12)

which illustrates the many-to-one property of this mapping. The covariant, con-
travariant or mixed nature of a convected tensor field is lost by the field-transfer
operator whenever a convected body field is mapped into a Cartesian spatial field.
This property is not lost, however, whenever convected body fields are mapped into
general spatial fields, which are not used in this paper.
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In contrast with the mappings of Eq. (C12), deformation fields will result when-
ever the time dependence of the convected metric differs from the time of field
transfer; in particular,

' p-l -1 _f ‘o -1~
Yo—B ', y, =B, y=C, y =C, (C13)

where B and C are the left and right (or Finger 1894 and Green 1841) deformation
tensors, respectively, defined in Eq. ().

Similarly, whenever metric fields are referenced to the dummy state of integra-
tion s, fp < s =< {, for example, as they can appear in viscoelastic models, then
it follows straightaway that these body metric tensors map into Cartesian space
according to

o~ -1 ! & 0 ~ _1 o =y
yy=—=B", yo =B, y=C, y, =C, (Cry)

where B = FFT and C = ﬁTﬁ, with F and F being defined in Eq. (2).

t
The convected stress tensor 7 maps into Cartesian Space as T = T so that

i1
Wy Lo P=®T and Qr—sS=2F'TF T,  (Ciy)

1)

where T is the Cauchy stress, P is the Kirchhoff stress and S is the second Piola-
Kirchhoff stress, all of which are symmetric.

Applying the field-transfer results given in Egs. (C12—Ci5) to the constitutive
formule listed in Egs. (Cg, C7 & Cr11) produces the constitutive formula written
down in Eqgs. (30-34).

D Small Strain/Rotation Relationships

A variant of one’s theory is often sought that can be expressed in terms of the
displacement vector # := x (X )— X and its gradient G := F -1, G;; = du;/dX],
through the classic tensor fields defining infinitesimal strain € := %(G + GT) and
infinitesimal rotation @ = %(G — GT), wherein the strain tensor € is symmetric
(i.e., € = €), while the rotation tensor @ is skew (viz., ® = —@").

From these definitions, one can express the finite stretch and rotation tensors
U and R (where F = RU from the polar decomposition theorem) in terms of the
infinitesimal strain and rotation tensors € and @ via the formule

U=exp(e)=I+e+%ez+---,
U! =exp(—e)=l—e+%e2—---,
R=exp@) =I+o+lo+:
RT=exp(-0)=1-o+ o>,
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so that the various forms of the deformation gradient become

F=RU=I+e+w+we+%(ez+w2)+...,
FT=UR"=1+4+€e-w—€w+i(e+w’)+ -,

F'=U'RT=1-€e-w+tew+i(e+w’)—-, (D2
FT=RU'=l-€¢+0-—we+ (e +0*)—,
which in turn produce the following expressions for the deformation tensors
C=F"F =1+2¢+2e*+---,
Cl=F1FT=1-2¢+2*—---,
(D3)

B=FF =1+4+2+2we—€w)+2e>+---,
B!'=F TF!'=1-2¢—2(we—€w)+2€>—---.

Using these series expansions allows one to construct first- and second-order ap-
proximations for most finite-strain constitutive formulz.
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